Network Completion Using Dynamic Programming and Least-Squares Fitting
نویسندگان
چکیده
We consider the problem of network completion, which is to make the minimum amount of modifications to a given network so that the resulting network is most consistent with the observed data. We employ here a certain type of differential equations as gene regulation rules in a genetic network, gene expression time series data as observed data, and deletions and additions of edges as basic modification operations. In addition, we assume that the numbers of deleted and added edges are specified. For this problem, we present a novel method using dynamic programming and least-squares fitting and show that it outputs a network with the minimum sum squared error in polynomial time if the maximum indegree of the network is bounded by a constant. We also perform computational experiments using both artificially generated and real gene expression time series data.
منابع مشابه
Network Completion for Static Gene Expression Data
We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a n...
متن کاملExpected Duration of Dynamic Markov PERT Networks
Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...
متن کاملA New Approach to Distribution Fitting: Decision on Beliefs
We introduce a new approach to distribution fitting, called Decision on Beliefs (DOB). The objective is to identify the probability distribution function (PDF) of a random variable X with the greatest possible confidence. It is known that f X is a member of = { , , }. 1 m S f L f To reach this goal and select X f from this set, we utilize stochastic dynamic programming and formulate this proble...
متن کاملAutomatic Segmentation of Sung Melodies
The present work explores several techniques for the automatic segmentation of sung melodies. Most contemporary music information retrieval (MIR) systems require sung queries to be segmented into disjoint regions representing individual notes for database searching. The fundamental philosophy adhered to throughout this work is that a melody segmentation algorithm should rely primarily on fundam...
متن کاملInterpolation using Hankel tensor completion
We present a novel multidimensional seismic trace interpolator that works on constant-frequency slices. It performs completion on Hankel tensors whose order is twice the number of spatial dimensions. Completion is done by fitting a PARAFAC model using an Alternating Least Squares algorithm. The new interpolator runs quickly and can better handle large gaps and high sparsity than existing comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012